1	How do growers respond to host resistance? A conditional Gaussian Bayesian network for
2	causal inference of fungicide cost savings
3	Jae Young Hwang ¹ , Sharmodeep Bhattacharyya ² , Shirshendu Chatterjee ³ , Thomas L. Marsh ⁴ ,
4	Joshua F. Pedro ³ , and David H. Gent ¹
5	
6	¹ U.S. Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research
7	Unit, Corvallis, Oregon 97331
8	² Department of Statistics, Oregon State University, Corvallis, OR 97331
9	³ Department of Mathematics, City University of New York, New York City, New York 10031
10	⁴ School of Economic Sciences, Washington State University, Pullman, Washington 99163
11	
12	Corresponding author: David H. Gent dave.gent@usda.gov
13	
14	Disclaimer: The use of trade, firm, or corporation names in this publication is for the information
15	and convenience of the reader. Such use does not constitute an official endorsement or approval
16	by the United States Department of Agriculture or the Agricultural Research Service of any

product or service to the exclusion of others that may be suitable. 17

18

19	Abstract
20	The damage potential of crop disease is tremendous, and growers may require optimal
21	fungicide input to save money from the Hop powdery mildew incidence caused by Podosphaera
22	macularis. The economic value of disease resistance has been researched for a long time, but
23	how increasing host resistance saves on input costs is multifaceted and nuanced. We draw
24	upon a comprehensive data set of the incidence of hop plants with powdery mildew collected
25	from commercial hop yards in Oregon from 2014 to 2017 and associated production meta-data,
26	and grower pesticide application records to understand how host resistance to hop powdery
27	mildew influences the cost of fungicide inputs. We used Bayesian networks, which allowed us
28	to identify a framework of the idiosyncratic elements of the motivating pathosystem. They
29	identified high levels of host resistance could reduce the annual costs of fungicides.
30	Furthermore, another important insight from our finding was in the types of fungicides used,
31	shifting from relatively expensive synthetic fungicides or mixtures thereof to lesser expensive
32	non-synthetic fungicides. This switching behavior may happen across cultivars, even those with
33	relatively high levels of host resistance. We also found out how the annual costs of fungicides
34	change with seasonal mean disease incidence depending on the specific susceptibility to
35	(non)R6-virulent strains through the simulations studies. Our findings hint at several potential
36	strategies for switching pesticide use and costs for managing powdery mildew on hop. We also
37	highlight the utility of Bayesian networks for simultaneously understanding the multifaceted
38	interaction of several factors for causal inference in observational studies.

Commented [DG1]: Points to make:

1. High levels of resistance needed to substantially reduce pesticide costs in this crop

2. How increasing host resistance saves on input costs is nuanced. Cost savings vs. spray savings: changes in interval and slight delay in first spray, but real savings are due to choice of pesticide

 Tension between reductions in spraying/costs and the level of resistance needed. Imperative to consider durability Approach provides a framework for understanding causality for complex, multivariate problems